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Dataset
• ScanNet includes 1,513                                      

indoor scene scans with                                                     
camera poses, instance +                                             
semantic segmentation labels  

• Preprocessing: Group “chunks" of k consecutive 
RGB-D frames, convert to point clouds, separate 
each chunk into individual object point clouds

• 3D mapping is a key building block for vision 
applications from AR/VR to autonomous driving 

• Current methods don’t work well in large scenes 
or on embedded processors for two reasons: 
• Memory required to store map grows rapidly 

with size of scene 
• Drift builds up as small errors in the map 

accumulate, and correcting it typically requires 
matching every new frame with all past frames 

• We present a series of novel deep learning 
architectures to enable building globally-
accurate 3D maps of large scenes in real-time

Related Work
• SegMap (Dubé et al., 2018) presents a learned 

descriptor for voxel grids that can be used for 
compression and drift correction (“loop closure”) 

• Limitations: voxel grids lose resolution, network 
is never trained explicitly for loop closure task

1

2

4

3

5
Class PredictionEmbedding

CompressedFeatures

Original Reconstruction

Original scene Point cloud input Reconstruction

Geometric Evaluation

 C
ha

m
fe

r d
is

ta
nc

e 
(m

)

0

0.075

0.15

0.225

0.3

Compression ratio

0 25 50 75 100

Probabilistic Evaluation

KL
 D

iv
er

ge
nc

e

0.0000

0.0008

0.0015

0.0023

0.0030

Compression ratio

0 37.5 75 112.5 150

Results (Embedding)

Encoder 
Using a PointNet++ 
module (Qi et al., 
2017), we encode 
each point cloud 
into a single feature 
vector

1
Compression 

Using an MLP, we 
further compress the 
encoder’s output to 
be compactly stored 
in memory

2
Decoder 

Using a coarse-to-fine 
decoder inspired by PCN 
(Yuan et al., 2018) + geometric 
reconstruction loss, we 
decompress back into full 
point clouds on-demand
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Embedding 
Using an MLP + triplet loss, we 
embed the encoder’s output into a 
vector space over which L2 distance 
represents geometric similarity, 
allowing us to detect loop closures
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Classification 
Using an MLP + cross entropy loss, we 
regress object class labels (e.g., “TV,” 
“sofa,” “table”) to force our embeddings 
to be semantically-meaningful
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1024 input points × (x, y, z) → network bottleneck of size 32 = 96× compression ratio

Stitching together individual reconstructed objects, we see that our network preserves 
the overall geometric structure of a scene, making it useful for real-time 3D mapping
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We fit GMM’s (←) to the original and reconstructed point clouds and 
use a Monte Carlo simulation (Hershey & Olson, 2007) to approximate 
DKL. Then, we reduce the number of GMM’s (“compressing” the data) 
and benchmark our method against GMM-based compression.

Future Work
• Integrate work into full 3D mapping pipeline for 

more rigorous evaluation 
• Develop end-to-end deep learning-based SLAM
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ROC Curve (Loop Closure Detection)
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Example kNN query in embedding space:


