
Point Cloud Autoencoders for Fast, Globally-Accurate 3D Mapping
Mihir Garimella, Prathik Naidu

{mihirg, prathikn}@stanford.edu

Technical ApproachIntroduction Results (Compression)
Original Reconstruction Original Reconstruction

Dataset
• ScanNet includes 1,513

indoor scene scans with
camera poses, instance +
semantic segmentation labels

• Preprocessing: Group “chunks" of k consecutive
RGB-D frames, convert to point clouds, separate
each chunk into individual object point clouds

• 3D mapping is a key building block for vision
applications from AR/VR to autonomous driving

• Current methods don’t work well in large scenes
or on embedded processors for two reasons:
• Memory required to store map grows rapidly

with size of scene
• Drift builds up as small errors in the map

accumulate, and correcting it typically requires
matching every new frame with all past frames

• We present a series of novel deep learning
architectures to enable building globally-
accurate 3D maps of large scenes in real-time

Related Work
• SegMap (Dubé et al., 2018) presents a learned

descriptor for voxel grids that can be used for
compression and drift correction (“loop closure”)

• Limitations: voxel grids lose resolution, network
is never trained explicitly for loop closure task

1

2

4

3

5
Class PredictionEmbedding

CompressedFeatures

Original Reconstruction

Original scene Point cloud input Reconstruction

Geometric Evaluation

 C
ha

m
fe

r d
is

ta
nc

e
(m

)

0

0.075

0.15

0.225

0.3

Compression ratio

0 25 50 75 100

Probabilistic Evaluation

KL
 D

iv
er

ge
nc

e

0.0000

0.0008

0.0015

0.0023

0.0030

Compression ratio

0 37.5 75 112.5 150

Results (Embedding)

Encoder
Using a PointNet++
module (Qi et al.,
2017), we encode
each point cloud
into a single feature
vector

1
Compression

Using an MLP, we
further compress the
encoder’s output to
be compactly stored
in memory

2
Decoder

Using a coarse-to-fine
decoder inspired by PCN
(Yuan et al., 2018) + geometric
reconstruction loss, we
decompress back into full
point clouds on-demand

3

Embedding
Using an MLP + triplet loss, we
embed the encoder’s output into a
vector space over which L2 distance
represents geometric similarity,
allowing us to detect loop closures

4

Classification
Using an MLP + cross entropy loss, we
regress object class labels (e.g., “TV,”
“sofa,” “table”) to force our embeddings
to be semantically-meaningful

5

1024 input points × (x, y, z) → network bottleneck of size 32 = 96× compression ratio

Stitching together individual reconstructed objects, we see that our network preserves
the overall geometric structure of a scene, making it useful for real-time 3D mapping

Ours (32)

Ours (64)

SegMap Google Draco (2)

Draco (4)

Draco (6)

Draco (8)
Draco (10)

We fit GMM’s (←) to the original and reconstructed point clouds and
use a Monte Carlo simulation (Hershey & Olson, 2007) to approximate
DKL. Then, we reduce the number of GMM’s (“compressing” the data)
and benchmark our method against GMM-based compression.

Future Work
• Integrate work into full 3D mapping pipeline for

more rigorous evaluation
• Develop end-to-end deep learning-based SLAM

Ours (AUC = 0.88)
SegMap (AUC = 0.74)

ROC Curve (Loop Closure Detection)

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Input Nearest Neighbors

True positive True positive False positive

Ours (32)

GMM (3)

GMM (4)

GMM (5)

GMM (6)
GMM (8)

GMM (7)

Example kNN query in embedding space:

