Point Cloud Autoencoders for Fast, Globally-Accurate 3D Mapping

Introduction

- 3D mapping is a key building block for vision applications from AR/VR to autonomous driving
- Current methods don't work well in large scenes or on embedded processors for two reasons:
- **Memory** required to store map grows rapidly with size of scene
- **Drift** builds up as small errors in the map accumulate, and correcting it typically requires matching every new frame with all past frames
- We present a series of novel deep learning architectures to enable building globallyaccurate 3D maps of large scenes in real-time

Related Work

- SegMap (Dubé et al., 2018) presents a learned descriptor for voxel grids that can be used for compression and drift correction ("loop closure")
- Limitations: voxel grids lose resolution, network is never trained explicitly for loop closure task

Dataset

• ScanNet includes 1,513 indoor scene scans with camera poses, instance +

- semantic segmentation labels
- Preprocessing: Group "chunks" of k consecutive RGB-D frames, convert to point clouds, separate each chunk into individual object point clouds

Mihir Garimella, Prathik Naidu {mihirg, prathikn}@stanford.edu

(1) Encoder

Using a **PointNet++** module (Qi et al., 2017), we **encode** each point cloud into a single feature vector

Original

in memory

(4) Embedding

Using an MLP + triplet loss, we embed the encoder's output into a vector space over which L_2 distance represents geometric similarity, allowing us to **detect loop closures**

False positive rate

Results (Embedding)

Technical Approach

(2) **Compression**

Using an MLP, we further compress the encoder's output to be compactly stored

(3) **Decoder**

Using a **coarse-to-fine decoder** inspired by PCN (Yuan et al., 2018) + geometric reconstruction loss, we decompress back into full point clouds on-demand

Class Prediction

(5) Classification

Using an MLP + cross entropy loss, we regress object class labels (e.g., "TV," "sofa," "table") to **force our embeddings** to be semantically-meaningful

Example *kNN* query in embedding space:

Nearest Neighbors

True positiv

Frue positiv

False positive

1024 input points $\times (x, y, z) \rightarrow$ network bottleneck of size $32 = 96 \times \text{compression ratio}$

Stitching together individual reconstructed objects, we see that our network **preserves** the overall geometric structure of a scene, making it useful for real-time 3D mapping

We fit GMM's (\leftarrow) to the original and reconstructed point clouds and use a Monte Carlo simulation (Hershey & Olson, 2007) to approximate D_{KL} . Then, we reduce the number of GMM's ("compressing" the data) and benchmark our method against GMM-based compression.

Future Work

• Integrate work into full 3D mapping pipeline for more rigorous evaluation

• Develop end-to-end deep learning-based SLAM