Introduction

- Point clouds are a popular and versatile way to represent 3D objects
- However, raw 3D sensor data is often sparse and noisy due to occlusion, range limitations, and sensor failures, making point clouds difficult to process accurately in real-world applications • Current methods for point cloud completion work
- well on synthetic data but fail on real-world data because they require *paired* datasets
- We use a GAN for point cloud completion on unpaired data across several types of objects

Related Work

- We build on the work of **Chen et al. (2019)**, which uses two autoencoders and a GAN to map partial to complete point clouds given unpaired data
 - Key limitation: not actually useful in practice because they have to train a separate network for each type of object → we solve this

Dataset

- ShapeNet (Chang et al., 2015) contains 51,300 CAD models of 55 types of common objects • In **PCN** (Yuan et al., 2018), the authors simulate occlusion of ShapeNet models to generate partial point clouds of 28,974 objects across 8 classes
- We use PCN dataset; fully synthetic but unpaired, good starting point for multi-class completion

Generalizable Unpaired Point Cloud Completion Mihir Garimella, Prathik Naidu {mihirg, prathikn}@stanford.edu

3

Train AEs on distributions of partial and complete point clouds (1) Encoder (1) (2) Embedding PointNet (Qi et al., 2017)

(3) Classification

Using an MLP + cross entropy loss, we regress object class labels to make different classes map to different parts of the embedding space.

Use GAN to map between these distributions

Technical Approach

Class Prediction

Class Prediction

Using a series of repeated modules to capture local and global information, we embed each point **cloud** into a single feature vector.

(2) **Decoder**

Using a **coarse-to-fine decoder** inspired by PCN (Yuan et al., 2018) + geometric reconstruction loss, we convert the lowdimensional embeddings back to full point clouds.

- complete data
- Evaluate with combined data from more classes

Future Work

- Fine-tune AEs while training GAN to produce
- more useful embeddings
- Evaluate with real-world partial + synthetic