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Introduction

e Point clouds are a popular and versatile way to
represent 3D scenes

e However, raw sensor data (LIDAR, RGB-D) is often
sparse and irregular, making it difficult to use with

deep networks or where photo-realism matters

e We explore upsampling both the geometric
structure and photo-realistic visual information in
a sparse colored 3D point cloud

e \We enable key applications in areas like VR, scene
understanding, and autonomous driving

Related Work

e Partial convolutions (Liu et al., 2018) demonstrate

impressive results for 2D image inpainting and

super-resolution

* Pointwise convolutions (Hua et al., 2018) propose

a simple convolution operator for 3D point clouds

e PU-Net (Yu et al., 2018) uses recent methods in
3D deep learning to upsample the geometric

structure of single object point clouds

Dataset

* Matterport3D dataset contains @a% T Az
3D textured meshes from 90 ‘
indoor scenes

* Preprocessing pipeline converts
meshes to point clouds, creates (1.5m)3 chunks,

and extracts patches of 4096 points from each

Technical Approach Results
We define a new operator called the pointwise partial convolution Visual Upsampling
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For photo-realistic visual upsampling, we design a “flattened U-Net”
architecture, an adaptation of U-Net for point clouds. It removes the

downsampling/upsampling in U-Net but preserves skip links

(implemented as pointwise feature concatenation + mask addition).
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For visual upsampling task: n = 14 (28 layers), perceptual loss function (Lab color difference per point), 9 features
per point at each intermediate layer

® Future: train geometric and visual upsampling

, , , | networks together for higher accuracy, hole filling
For geometric upsampling, we modity PU-Net to work on point clouds
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visual upsampling network to create an end-to-end pipeline for
upsampling both geometric and visual details of point clouds.
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After training for just 3 epochs, same operator and architecture
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demonstrate impressive preliminary results on point cloud hole filling task




